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The thermodynamic design of heat and 
mass transfer processes and devices 
Adrian Bejan* 
This review article places in perspective the new work devoted both to the analysis of the 
thermodynamic irreversibility of heat and mass transfer components and systems and to the 
design of these devices on the basis of entropy generation minimization. The review focuses 
on the fundamental mechanisms responsible for the generation of entropy in heat and fluid 
flow and on the design tradeoff of balancing the heat transfer irreversibility against the fluid 
flow irreversibility. Applications are selected from the fields of heat exchanger design, 
thermal energy storage, and mass exchanger design. This article provides a comprehensive, 
up-to-date review of second-daw analyses published in the heat and mass transfer 
literature during the last decade. 
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Introduction 

The objective of this review article is to outline the most basic 
steps of the procedure of entropy generation minimization 
(thermodynamic design) at the system-component level. This 
paper is a continuation of the review work attempted on two 
earlier occasions; ~'2 therefore, a further objective is to review the 
fundamental work published in this area in the 1980s. 

The fundamental idea justifying the work of irreversibility 
minimization at the system-component level is that the overall 
entropy generation rate of the system is, in fact, the sum of the 
entropy generation contributions made by all the system's 
components. If the irreversibility of one component is 
minimized and the other components are untouched,t the 
irreversibility reduction registered at the component level shows 
up also at the overall system level. 

The tradeoff between competing 
irreversibilities 

The basic design problem is to determine the thermo- 
dynamically optimum size or operating regime of a certain 
engineering system, where by "optimum" we mean the 
condition in which the system destroys the least exergy while 
still performing its fundamental engineering function. It turns 
out that, in many systems, the various mechanisms and design 
features that account for irreversibility compete with one 
another. For this reason, the thermodynamic optimum that 
concerns us here is the condition of the most desirable tradeoff 
between two or more competing irreversibilities. 

Internal flow and heat transfer 

In view of the diversity of thermodynamic optimization 
problems--at  least one problem of this type is contained in each 
power and refrigeration system design--we begin with some of 
the simplest illustrations of the basic design principle. Later, as 
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we review the expanding literature of this field, we focus on more 
complex systems. Two simple elementary features (sub- 
components) i n the constitution of most power and refrigeration 
installations are the heat exchanger passage and the fin. Both 
features account for most of the heat exchanger. Consider first 
a heat exchanger passage, which is a duct of arbitrary cross 
section (A) and arbitrary wetted perimeter (p). The engineering 
function of the passage is specified in terms of the heat transfer 
rate per unit length (q') that is to be transmitted to the stream 
(rh); that is, both q' and th are specified. In the steady state, the 
heat transfer q' crosses the temperature gap AT formed between 
the wall temperature (T + AT) and the bulk temperature of the 
stream (T). The stream flows with friction in the x direction; 
hence, the pressure gradient ( - d P / d x ) >  O. 

Taking as thermodynamic system a passage of length dx, the 
first law and the second law state 

vhdh=q' dx (1) 

~, =rods q' >10 (2) 
dx T+AT 

where Sgen is the entropy generation rate per unit length. 
Combining these statements with dh= Tds +vdP, the design- 
important quantity Sgcn becomes3 

_ q'AT vh / dP \  
Sgen r2(l+ar/rt 

q'AT rh [ dP\>~l 
== T 2 + ~ - ~ x x J  0 (3) 

The denominator of the first term on the right-hand side has 
been simplified by assuming that the local temperature difference 
AT is negligible compared with the local absolute temperature T. 

The heat exchanger passage is a site for both flow with friction 
and heat transfer across a finite AT; this is why the Sgen 
expression has two terms, each accounting for one irreversibility 
mechanism. We record this observation by rewriting Eq. (3) as 

Sgen = Sgen,AT + Sgen Ap (4) 

In other words, the first term on the right-hand side of Eq. (3) 
represents the entropy generation contributed by heat transfer. 
The relative importance of the two irreversibility mechanisms is 
described by the irreversibility distribution ratio 4), which is 
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Area constraint (Eq. 53) 
Area, cross-sectional area, flow cross section 
Gas-liquid bath contact area 
Gas-atmosphere contact area 
Areas of the two sides of the heat exchanger 
surface (Eq. 43) 
Damping coefficient 
Dimensionless group (Eq. 16) 
Specific heat of solid or incompressible liquid 
Specific heat at constant pressure, J/kg K 
Specific heat at constant pressure, J/kgmole K 
Drag coefficient 
Concentration, kgmole/m 3 
Constant (Eq. 114) 
Tube diameter, plate-to-plate spacing 
Hydraulic diameter 
Mass diffusivity 
Specific flow exergy, J/kg 
Flow exergy, J 
Flow exergy flowrate, W 
Friction factor 
Drag force 
Dimensionless mass velocity (Eq. 51) 
Mass velocity (Eq. 9) 
Specific enthalpy, J/kg 
Heat transfer coefficient, W/m 2 K 
Mass flux vector, kgmole/m2s 
Thermal conductivity 
Ratio of specific heats, ce/c v 
Spring constant (Fig. 2) 
Permeability of porous medium in the Darcy 
flow regime (Eq. 124) 
Length 
Mass 
Mass flowrate 
Mass fiowrate during the exergy removal 
phase 
Piston mass 
Number of moles of species k 
Entropy generation number 
Augmentation entropy generation number 
Imbalance (remanent) entropy generation 
number 
Entropy generation numbers of the two sides 
of the heat exchanger surface 
Nusselt number 
Number of heat transfer units (Eq. 45) 
Wetted perimeter, m (Eq. 11) 
Pressure 
Partial pressure of species i 
Reference pressure 
Prandtl number, v/~ 
Heat flux vector, W/m 2 
Heat transfer rate per unit length, W/m 
Heat flux, W/m 2 
Heat transfer rate, W 
Heat transfer rate from body to external flow 
Heat transfer rate interaction with the 
ambient 
Temperature ratios (Eq. 74) 
Ideal gas constant, J/kg K 
Universal gas constant, J/kgmole K 
Reynolds number 
Specific entropy, J/kg K 
Entropy, J /K 
Entropy generation rate, W/K 
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Subscripts 
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Entropy generation rate per unit length, 
W/m K 
Volumetric entropy generation rate, W/m 3 K 
Partial molal entropy, J/k mole K 
Stanton number 
Time 
Cooldown time 
Temperature 
Surface temperature of body in external flow 
Initial temperature (Fig. 13) 
Refrigerant (cold gas) temperature 
Reference or ambient temperature 
Free stream temperature, gas supply 
temperature 
Specific internal energy 
Internal energy 
Free stream velocity 
Velocity vector 
Velocity components 
Parameter, m3/kg (defined after Eq. 89) 
Volume constraint (Eq. 58) 
Cartesian coordinates 
Quality 
Dimensionless parameter (Eq. 109) 
Displacement 
Volumetric rate of power dissipation, W/m 3 
Thermal diffusivity 
Difference 
Heat exchanger effectiveness (Eq. 78) 
Rational effectiveness (Eq. 94) 
First-law efficiency (Eq. 103) 
Second-law efficiency 
Witte and Shamsundar's efficiency (Eq. 97) 
Dimensionless time (Eq. 106) 
Viscosity 
Chemical potential of species i 
Kinematic viscosity 
Density 
Dimensionless temperature difference (Eqs. 48 
and 106) 
Irreversibility distribution ratio (Eq. 5) 
Viscous dissipation function (Eqs. 30 and 31) 
Capacity rate ratio, (thCp)ff(rhce) 2 > 1 
(K/Mp) ~/2 (Fig. 2) 

Augmented 
Batch of liquid or solid storage material 
Brayton-cycle power plant 
Cooler, cold side 
Saturated liquid, or final state 
Shorthand for(  )g-( )f 
Saturated vapor 
Heater, hot side 
Initial state, inner surface, species 
Inlet 
Maximum 
Minimum 
Outer surface 
Optimum 
Outlet 
Fluid saturated porous medium 
Due to fluid flow AP 
Removal phase of storage cycle 
Regenerator 
Due to heat transfer AT 
Wall 
Dimensionless variables (Eq. 36) 
Reference, ambient conditions 
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defined as 

fluid flow irreversibility 
= (5) 

heat transfer irreversibility 

Equation (4) can then be rewritten as 
"t 

Slgen = (1 -~- (]))Sgen,A T (6) 

A remarkable feature of the S~¢, expression (Eq. 3), and of 
many like it for other simple devices, is that a proposed design 
change (for example, making the passage narrower) induces 
changes of opposite signs in the two terms of the expression. 
There exists then an optimum tradeoff between the two 
irreversibility contributions, an optimum design for which the 
overall measure of exergy destruction (S'g¢,) is minimum while 
the system continues to serve its specified function (q', rh). 

The tradeoff between heat transfer and fluid flow 
irreversibilities becomes clearer if we convert Eq. (3) into the 
language of heat transfer engineering, in which the heat 
exchange passage is usually discussed. For this purpose, we 
recall the definitions of friction factor, Stanton number, mass 
velocity, Reynolds number, and hydraulic diameter 

f pD h ~ dP~ = \ -  ax/ (7) 

St q'/(pAT) (8) 
CpG 

rh 
G =- -  (9) 

A 

Re = GDh (10) 
# 

4A 
O h = - -  (11) 

P 
where q'/(pAT) of Eq. (8) is the average heat transfer coefficient. 
The entropy generation rate formula (Eq. 3) becomes 

(q')20 h 2&3f 
S'g,=4TZthcpS t ~- p Z ~ h  A 2 (12) 

Considering that both q' and th are fixed, we note that the 
thermodynamic design of the heat exchanger passage has two 
degrees of freedom, the wetted perimeter p and the cross- 
sectional area A, or any other pair of independent parameters, 
such as (Re, Dh) or (G, Oh). 

The competition between heat transfer and fluid flow 
irreversibilities is hinted at by the positions occupied by St and f 
on the right-hand side of Eq. (12). The Reynolds and Colburn 
analogies regarding turbulent momentum and heat transfer 
teach us that St and f usually increase simultaneously, 4 as the 
designer seeks to improve the thermal contact between wall and 
fluid• Thus what is good for reducing the heat transfer 
irreversibility is bad for the fluid flow irreversibility, and vice 
versa. 

The tradeoff between the two irreversibilities and the 
minimum value of the overall S'gen can be illustrated by assuming 
a special case of passage geometry, namely, the straight tube 
with circular cross section. In this case, p and A are related 
through the pipe inner diameter D, the only degree of freedom 
left in the design process. Writing 

D 2 
Dh=D, A = n ~ - ,  and p=rcD (13) 

Eq. (12) becomes 

(q,)2 32rh3f (14) 
Sg~" - rtT:kNu ~ /z2p 2 TD ~ 

where Re = 4rh/(nl~D), and Nu = hDh/k = St Re Pr. Invoking two 
reliable correlations for Nu and f in fully developed turbulent 
pipe flow, such as N u =  0.023 Re°aPr °'4 and f =  0.046 Re -°'2, 

and combining them with Eq. (14), yields an expression for ~;'ge, 
that depends only on Re. Solving dS~e,/d(Re)= O, we find the 
entropy generation rate is minimized when the Reynolds 
number (or pipe diameter) reaches the optimum value: ~ 

Reop t = 2.023 Pr -°'°vl Bo 0"358 (15) 

This compact formula allows the designer to select the 
optimum tube size for minimum irreversibility. Parameter B0 is 
fixed as soon as q', th, and the working fluid are specified: 

P (16) B o = r'nq' ps/Z(kT)l/2 

The effect of Re on Sgen can be expressed in relative terms as 

' ' gen- -0 .856(  Re )-0.8 / R e  54.8 
Srg en,min Reop t + 0.144~eo~t ) (17) 

where S~enlmin = S ~  (Reopt). 
Figure 1 shows that the entropy generation rate of the 

tube increases sharply on either side of the optimum. The 
irreversibility distribution ratio varies along the V-shaped curve, 
increasing in the direction of small D's (large Re's, because 
rh=constant) in which the overall entropy generation rate is 
dominated by fluid friction effects. At the optimum, the 
irreversibility distribution ratio assumes the value (hopt = 0.168. 

This most fundamental issue of thermodynamic irreversibility 
at the heat exchanger passage level was reconsidered by Kotas 
and Shakir. 6 They took into account the temperature 
dependence of transport properties and showed that the 
operating temperature of the heat exchanger passage has a 
profound effect on the thermodynamic optimum. For example, 
the optimum Reynolds number increases as the absolute 
temperature T decreases. The minimum irreversibility 
corresponding to this optimum design also increases as T 
decreases. 

Heat transfer augmenta t ion  

Another example of the competition between different 
irreversibility mechanisms occurs in connection with the general 
problem of heat transfer augmentation, in which the main 
objective is to devise a technique that increases the wall~uid 
heat transfer coefficient relative to the coefficient of the 
unaugmented (that is, untouched) surface. A parallel objective, 
however, is to register this improvement without causing a 
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Figure 1 The relative entropy generation rate for forced convection 
heat transfer through a smooth tube 
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damaging increase in the pumping power demanded by the 
forced convection arrangement. These two objectives reveal the 
conflict that accompanies the application of any augmentation 
technique: A design modification that improves the thermal 
contact (for example, roughening the heat transfer surface) is 
likely to augment also the mechanical pumping power 
requirement. 

The true effect of a proposed augmentation technique on 
thermodynamic performance may be evaluated by comparing 
the irreversibility of the heat exchange apparatus before and 
after the implementation of the augmentation technique. 7 
Consider again the general heat exchanger passage referred to in 
Eqs. (1)-(3), and let S'g¢,,0 represent the degree of irreversibility 
in the reference (unaugmented, untouched) passage. Writing 
S~gen,a for the heat transfer-augmented version of the same device, 
we can evaluate the augmentation entropy generation number as 

"~'gen a 
Xs ,a-  ~, " (18) 

agen, 0 

Augmentation techniques whose Ns, a values are less than 1 are 
thermodynamically advantageous. 

If the function of the heat exchanger passage is fixed, that is, if 
rh and q' are given, the augmentation entropy generation 
number can be put in the more explicit form 

Ns'a-  1 +4~o NS'AT+ Ns'~e (19) 

where 4~o is the irreversibility distribution ratio of the reference 
design, and Ns,Ar and Ns,~e represent the values of Ns, ~ in the 
limits of pure heat transfer irreversibility and pure fluid flow 
irreversibility, respectively. It is not difficult to show that these 
limiting values are 

St0 Dh, a 
NS'AT -- Sta Dh, 0 (20) 

faD,.oA~ 
Ns,ap - foDh,a A2 (21) 

The geometric parameters (A, Dh) before and after augmentation 
are linked through the rh=constant constraint, which reads 

Aa A 0 
Rea - -  = Re0 (22) 

Dh,a Dh,0 

Equations (19)-(22) show that Ns,~ is, in general, a function of 
both the heat transfer coefficient ratio (Sta/Sto) and the friction 
factor ratio (fa/Jo)- The relative importance of the friction factor 
ratio is dictated by the numerical value of gbo: This value is 
known because the reference design is known. The Ns,, 
calculation outlined above was used to evaluate several heat 
transfer augmentation techniques, ranging from surface 
roughening to the use of inserts that promote swirl flow. 7,8 

The impact of heat transfer augmentation on entropy 
generation was reconsidered more recently by Perez-Blanco. 9 
In place of a passage of length dx, Perez-Blanco took as system a 
single-stream heat exchanger tube of finite length (L). For 
simplicity, he assumed the tube wall temperature is uniform and 
developed analytical means of calculating the overall entropy 
generation rate of the finite-size system in terms of potential 
design variables. Particularly interesting are the results showing 
the maximum friction factor range that can be tolerated during 
heat transfer enhancement to maintain an unchanged overall 
entropy generation rate. 

External flow and heat transfer 
The competition between flow and heat transfer irreversibilities 
rules also the thermodynamic design of external convection heat 
transfer arrangements, in which the flow engulfs the solid body 
(walls) it exchanges heat transfer with. The overall entropy 
generation rate associated with an external convection 

configuration is ~° 

D,o. Q~(T~- T~) -~ FDV~ 
- To~ TB T~ (23) 

where QB, Ta, T~, FD, and U~ are, respectively, the instantaneous 
heat transfer rate between the body and the fluid reservoir, the 
body surface temperature, the fluid reservoir temperature, the 
drag force, and the relative speed between body and reservoir. 

This remarkably simple result proves again that inadequate 
thermal contact (the first term) and fluid friction (the second 
term) contribute hand in hand to degrading the thermodynamic 
performance of the external convection arrangement. One area 
in which Eq. (23) has found application is the problem of 
selecting the size and number (density) of fins for the design of 
extended surfaces. The thermodynamic optimization of fins 
and fin arrays of various geometries is described in 
Poulikakos. 1 O, ! 1 

Convective heat transfer in general 

What all the preceding examples have in common is a two-term 
expression for the entropy generation rate, or two distinct 
mechanisms of thermodynamic irreversibility: heat transfer and 
flow with friction. These two mechanisms are at work at any 
point in a convective field, as can be seen from the point-size 
control volume formulation of the mass conservation principle, 
the first law, and the second law: 

ep 
- p V .  v (24) 

0t 

Ou 
p ~- = - V- q -  PV. v -  w"' (25) 

S g e n = P ~ - + V  " ~- ~ 0  (26) 

The vectors v and q represent the velocity and the heat flux at the 
point surrounded by the infinitesimally small control volume. 
Note also that w"' represents the work done by the system per 
unit time and per unit volume. Eliminating u and s between 
these laws and using the per-unit-time version of du = T d s -  Pdv, 
namely, 

•u 0s p ~3p 
~t = T ~ + pZ ~t (27) 

yields the suspected two-term expression for the volumetric rate 
of entropy generation 

., 1 w"' 
Sge. = - ~ 2  q" V T -  ~>~ 0 (28) 

In the case of the incompressible flow of a viscous fluid, the 
place of ( -  w ' )  in the first law (Eq. 25) is occupied by/20, where 

is the viscous dissipation function (ref. 4, p. 11). Further, the 
heat flux vector and the local temperature gradient are related 
through the Fourier law of thermal diffusion 

q= - k V T  (29) 

which means on the right-hand side of Eq. (28), both terms are 
positive: 

., k 2 /2 
Sgen = ~  (VT) +~-O~> 0 (30) 

This aspect becomes even more evident if we write the two- 
dimensional version of Eq. (30) for a flow field (x, y) in which the 
local velocity components are (Vx, vy): 

s,,, 
gen T2Lt6~x) \~-y) 3 

7 I. L\~-x/] \ ~ }  _l + t i n  +~-x) J> (31) 
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Figure 2 (a) and (b) Undamped oscillations of a spring-mass gas 
system. (c) Thermal damping as the fingerprint of entropy generation 
due to heat transfer 

The first term on the right-hand side is clearly the contribution 
due to finite heat transfer down finite temperature gradients, 
and the second term represents the irreversibility due to 
frictional dissipation. This is why the finite control volume 
analyses highlighted in the preceding subsections led to similar 
two-term expressions for the entropy generation rate. The 
entropy generation rate of the finite-size control volume is the 
volume integral of the volumetric entropy generation rate Sg'en- 
The manner in which a convective field generates entropy at 
every point in the flow can be illustrated by means of entropy 
generation profiles and maps. 1,2A2 

Thermal "'damping'" 

On the pedagogical side of the challenge we face in engineering 
thermodynamics, one contribution of the irreversibility 
tradeoffs illustrated in this section is that they give physical 
meaning to relatively illusive concepts like the thermodynamic 
"loss" due to heat transfer across a finite AT. The two-term 
expressions seen above demonstrate that the heat transfer 
thermodynamic loss is directly comparable with a scaled version 
of the easier to grasp mechanical concept of frictional 
dissipation. The same lesson is taught by an ingenious exercise 
conceived by Moody 13 and summarized here in Figure 2. 

Figure 2(a) shows a spring-mass system (K, Mp) whose mass 
can serve as a piston for compressing a batch of ideal gas 
(Mg, R, cv). Disregarding the gas for a moment, we assume the 
piston slides in the cylindrical sleeve with friction in such a way 
that the friction force is proportional to the piston velocity. The 

motion of the piston is governed by the well-known equation 

d2Z dZ  2 
dt~+b~+~o Z = 0  (32) 

where b is the damping coefficients and co 2 = K/Mo. The motion 
is an undamped sinusoidal oscillation ifb = 0. In the general case 
b > 0, the oscillation is damped, and the amplitude decreases 
exponentially in time: 

Z=cl exp(-½bt)sint~o[1 / b \2ql/2 ) 

We shall see the same kind of damped oscillation is possible if 
b = 0 and irreversibility is provided by a mechanism other than 
"sliding with friction." This time we assume that the leak-proof 
seal between the piston and cylinder is frictionless, and the ideal 
gas compresses and expands in response to the motion Z(t). The 
entire apparatus is surrounded by the atmospheric temperature 
and pressure reservoir (To, Po). Since the temperature of the 
ideal gas (T) is expected to vary, we model the instantaneous 
heat transfer rate between it and the atmosphere as 

0o = hAg(T- To) (34) 

Here Ag is the gas-atmosphere contact area, and h is the 
corresponding heat transfer coefficient. Using Moody's 
notation, the differential equation for the piston motion can be 
written as 13 

' Z  d3Z, d" , dZ, 
dt 3 t35) 

where the dimensionless variables are 

t , =  , B,=k4-Ap~, K , = D ,  1 

/~A T O ( M  L \  1/z Z (36) 

Other parameters used in this formulation are L (the rest length 
of the gas column), A (the cylinder cross-sectional area), and k 
(the ratio Cp/C v of the gas, which should not be confused with the 
thermal conductivity). We focus next on three distinct regimes. 

a. The reversible and adiabatic limit corresponds to /~=0, 
which means D, = K ,  = 0, and Eq. (35) reduces to 

d2Z, 
dr2, + B,Z,=constant (37) 

In this case, the motion is a pure (undamped) sinusoid, as Figure 
2(a) shows. The ideal gas expands and contracts reversibly and 
adiabatically, and the lack ofirreversibility in the entire system 
is responsible for the absence of damping, 

b. The reversible and isothermal limit is represented by 
h---*oc; hence, (D,,K,)---~oo. In this limit, the equation of 
motion prescribes again an undamped oscillation: 

d z Z * (  K~po) dr2, + 1+ Z , = 0  (38) 

One example of this motion is given in Figure 2(b). The 
oscillation is again undamped because of the lack of 
irreversibility in the system. 

c. The general class of systems where h is finite can be called 
thermally damped because the oscillation has all the features 
revealed by the damped mechanical oscillator of Eq. (32). Figure 
2(c) shows one numerical solution to the complete Eq. (35). The 
damping effect in this case is provided by exactly what was 
missing in the limits (a) and (b), namely, irreversibly or 
entropy generation. Since frictional effects have been ruled out, 
the only irreversibility mechanism present in regime (c) is the 
heat transfer (~o across the finite temperature gap ( T -  To). 

The message of Moody's example is that from an overall 
system perspective, the effect of heat transfer irreversibility is 
qualitatively the same as that of friction-based irreversibility. In 
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Figure 3 Brayton-cycle heat engine with regenerative (counter- 
flow) heat exchanger 

Moody's example, that effect was damping. The message, 
however, is of general importance in thermodynamic design, 
and the effect of irreversibilities of all origins is always the 
same--lost  exergy. 

Balanced c o u n t e r f l o w  heat exchangers 

In this section, we increase the degree of complexity of the 
system component and address the problem of irreversibility 
minimization in heat exchangers. The classical approach to heat 
exchanger design suffers from a traditional bias toward first-law 
analysis and against second-law consideration of any kind. The 
very name "heat exchanger" suggests that the function of the 
apparatus might be to transfer a certain amount of heat between 
two or more entities (streams most often) at different 
temperatures. This is not generally true. For example, in power 
and refrigeration cycles, the function of the heat exchanger 
equipment is to allow various components of the cycle to 
communicate with one another in the least irreversible way 
possible. 

The ideal limit 

The tradeoff between heat transfer and fluid flow irreversibilities 
becomes visible one more time if we consider the class of 
balanced counterflow heat exchangers in the ideal limit of small 
AP's and AT. "Balance" means the capacity flowrates are the 
same on the two sides of the heat transfer surface: 

(/~/Cp) 1 = (tTtCp) 2 = l~¢p (39) 

The two sides are indicated by the subscripts 1 and 2. With 
reference to the counterflow heat exchanger sketched in Figure 
3, we write TI and T2 for the fixed (given) inlet temperature of 
the two streams, and P1 and P2 for the respective inlet pressures. 
The entropy generation rate of the entire heat exchanger is 

Sgen = (/~/Ce)l In TtT~Ut q-(thCp) 2 In T2'T~Ut 

- (rhR)l In Pl.out _ ( t h R ) 2  In P E , o u t  ( 4 0 )  
P1 P2 

where the working fluid has been modeled as an ideal gas with 
constant specific heat. The outlet temperatures Tl.out and T2,ou t 
can be eliminated by bringing in the concept of heat exchanger 
effectiveness.* If we also assume (1 - e).~ 1, and that the pressure 
drops along each stream are sufficiently small relative to the 
absolute pressure levels, the entropy generation rate may be 
nondimensionalized as 2'14 

* The general effectiveness definition is listed in Eq (77) 

- r  
(41) 

where N s is the entropy generation number 

1 
Ns = ~ - -  Sgen (42) 

mcp 
In this form, it is clear that the overall entropy generation rate 

(Ns) receives contributions from three sources of irreversibility, 
namely, the stream-to-stream heat transfer [regardless of the 
sign of (T 2 - T 1)] ; the pressure drop along the first stream, AP 1 ; 
and the pressure drop along the second stream, AP 2. The heat 
transfer irreversibility term can be split into two terms, each 
describing the contribution made by one side of the heat transfer 
surface. We are assuming that the stream-to-stream A T is due to 
the heat transfer across the two convective thermal resistances 
that sandwich the solid wall separating the two streams, and 
that the thermal resistance of the wall itself is negligible. That is, 
we write 

1 1 1 
÷ (43) 

hA1 hlA1 h2A2 
where A 1 and A 2 are the heat transfer surface areas swept by 
each stream, a n d / ~  and /~2 the side-heat transfer coefficients 
based on these respective areas. The overall heat transfer 
coefficient/~ is based on A~. The thermal resistance summation 
(Eq. 43) also means 

1 1 1 

Ntu - Ntu 1 "I-N'~- ~ (44) 
, t u , 2  

where 

hA I hlAl /12A2 
Ntu = rncp' Ntu' J" - thCp ' Ntu'2 - -  mCV" (45) 

In a balanced counterflow heat exchanger, the e(Ntu) 
relationship is particularly simple Is 

Ntu 
e = (46) 

1 + Ntu 
Combining Eqs. (41), (44), and (46), we find that in the "ideal" 
heat exchanger limit (small AT and AP's), the entropy 
generation number Ns splits into two groups of terms: 

r 2 R / A P \  .f2 R / A P \  
N s = _ _  + _  _ _  + _ _ + _  _ _  

Ntu,1 Cp~ P ) I  Ntu.2 cpk P ) 2  (47) 

The contribution of the ideal-limit analysis is that it separates 
N s into all the pieces that contribute to the irreversibility of the 
apparatus. The first pair of terms on the right,hand side of Eq. 
(47) represents the irreversibility contributed solely by side 1 of 
the heat transfer surface, Ns, t. The first term in this first pair is 
the entropy generation number due to heat transfer 
irreversibility on side 1, where z 2 is shorthand for a parameter 
fixed by T 1 and T2, 

r 2 = (T2 - T1)2 (48) 
T1 T2 

The one-side entropy generation numbers Ns,1 and Ns,2 have 
the same analytical form; therefore, we can concentrate on the 
minimization of only one of them (say, Ns,1) and keep in mind 
that the minimization analysis can be repeated identically for 
Ns.2. 

Despite the additive form of Ns, ~ (Eq. 47), the heat transfer 
and fluid friction contributions to it are, in fact, coupled through 
the geometric parameters of the heat exchanger duct (passage) 
that resides on side 1 of the heat exchanger surface. This 
coupling is brought to light by rewriting Ns. ~ in terms of the 
passage slenderness ratio (4L/Dh)I: 

= r 2  (Dh "] R 2 { 4 L \  
Ns.1 St 1 \4Lj1+Tglf1|~---|iCp\iJhf (49) 
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where f~ and St x are defined according to Eqs. (7) and (8). An 
important ingredient in the step from the Ns.~form (Eq. 47) to 
Eq. (49) is the relation between Ntu and St: 

Ntu , l  = Stx (50) 
l 

which follows from the definitions (Eqs. 8, 11, and 45) in 
combination with A1 = Lt p~, where pa is the wetted perimeter of 
passage 1. Finally, 9x is a dimensionless mass velocity defined as 

G1 
91 - (2pP 1 )1/2 (51)  

Area constraint 

As summary to the ideal limit analyzed in the preceding section, 
we note the one-side irreversibility depends on two types of 
parameters: 

R 
r,  , Pr 

Cp 

( 4 ~ )  (52) 
i '  Re~, 91 

The first row contains the parameters fixed by the selection of 
working fluid and inlet conditions. The second row lists the 
three parameters that depend on the size and geometry of the 
heat exchanger passage. How many of these three parameters 
are true "degrees of freedom" depends on the number of design 
constraints. 

One important constraint concerns the heat transfer area A~. 
In dimensionless form, the constant-area condition may be 
expressed as 2 

A1 a I = _ _  (2pPlp/2, constant (53) 
m 

where a x is the dimensionless area of side 1 of the surface. It is 
easy to show 

(4Dhh') a x 91 = (54) 
1 

and only two degrees of freedom remain for the minimization of 
Ns, x: 

z 2 R 
Ns.x (g l, Rel) 4--- al fl  g3 (55) 

alYlStl Ce 

Minimizing the entropy generation number subject to fixed 
(known) Reynolds number yields the optimum mass velocity 

r 2 

N ~256z6(Rcp)fl ~l/4 
S,,,r,,,n=L- ~ j (571 

The minimum entropy generation number varies as a l-1/2; 
therefore, the thermodynamic goodness of the heat exchanger is 
enhanced by investing more area in the design of each side. 

Volume constraint 

The constant-volume constraint is important in the design of 
heat exchangers for applications where space is an expensive 
commodity (for example, power plants for naval and airborne 
applications). The dimensionless constant-volume constraint 
may be written as 

8Pa 
vx = G ~ ,  constant (58) 

vm 

where V x is the volume of the passage (duct) on side 1. Noting that 
V t equals L~ times the cross-sectional flow area labeled A in Eqs. 

(9) and (ll), we also have 

tq#21 =(4L~-L t Re 1 (59, 
\ v h /  l 

This allows us to express NsA in terms of only gl and Re 1 as 
degrees of freedom (Re I also governs the variation of St I and 
f 0 :  

z2Rel ~-( R ~  vl f lg~ (60) 
Ns'~ vlg~Stx \ c v J  Re1 

Regarding Re~ as given, the optimum mass flowrate and 
corresponding minimum irreversibility are 2 

__[ r 2 Re 2 Ix,6 
g ,  ,opt - -  [ 2(R/~p}v~f~ St1_ (61) 

N ~27r4(R/ce) Re1 fx ]i/a 
S'l 'min = [ 4v~ St~ (62) 

The minimum irreversibility decreases as Vl - 1:3, that is, as the 
size of the flow passage increases and as the stream spends a 
longer time in residence in the passage. 

Combined area and volume constraint 

When the area (A 0 and the volume of the heat exchanger 
passage (I/1) are constrained simultaneously, only one degree of 
freedom is left for the thermodynamic optimization procedure 
(see the second row of Eq. (52)). This problem was formuated 
originally as an exerciseJ 6 Combining the area and volume 
constraints (Eq. 53 and 58) with the Ns. ~ form collected from the 
right-hand side of Eq. (47), we obtain 

__ r2vl ~ _ ( R ) a ~ f l  Re 3 
Ns'l a~ Stx Rex ~ v 3 (63) 

N ~ 

Here the only variable is Re 1, which affects Ns, 1 both directly 
and through St 1 and fx- In some designs, St x and f l  are 
relatively insensitive to changes in Re x (for example, in rough- 
wall pipes at sufficiently high Reynolds numbers). In these cases, 
the thermodynamic optimum corresponds to 

T 2 71 /4  
R e l , -  vx  [- _ / (64) 

a 13/2 L 3(R/ce)Stt f l  J opt 

It can be shown that the irreversibility distribution ratio ~b at 
this optimum (that is, the second term of Eq. 63 divided by the 
first) is equal to I/3. 

Ntu constraint 

Another way of exploiting the Ns-minimization idea was 
proposed recently by Sekulic and Herman) 7 What these 
authors consider fixed is the "operating point" in the heat 
transfer sense, that is, the overall number of heat transfer units 
(Ntu), the capacity flowrate ratio [~o= ( l ? l e p ) l / ( m C p ) 2 ]  , and the 
flow arrangement (counterflow, cross flow, and the like). Since, 
in general, the effectiveness is a function of Ntu, ¢o, and flow 
configuration, it means Sekulic and Herman's optimization is 
carried out also at constant e. 

In the case of a general two-stream heat exchanger (finite AT 
and AP's, unspecified flow arrangement), the entropy 
generation rate Sge, is given by Eq. (40), where the first two 
terms on the right-hand side account together for the heat 
transfer irreversibility, Sgen.ar" Writing 

Sgen Sgen AT (65)  
Ns - (,~c,,~)2' Ns, AT = ~(~hC,,) ° - ' -  
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T a b l e  1 The tradeoff between pressure drop irreversibilities in a heat exchanger with constnat overall Ntu 

/ 4 / \  
A ~ ' - ~  "-~ a ( N t u ,  1) 

\Dh/1 

Eq. (50) 
(+) (+) 
( - )  ( - )  

"-* A(Ntu'2) \Dh]2 

Eq. (44), Eq. (50) 
with Ntu = written for 
constant side 2 
( - )  ( - )  
(+) (+) 

A (Ns, Ap 1 ) ~ A (Ns, AP 2) 

Conclusion 
(+) ( - )  
( - )  (+) 

Eq. (40) assumes the dimensionless form 

~ ,  , , J  
~ r  

NS,APz 

+ R 
~ - 2 J J  (66) 

~ r  

Ns,AP2 

where Ns,ap ' and Ns,ap 2 are clearly the pressure drop 
irreversibilities contributed by the two sides of the heat 
exchanger surface. The heat transfer entropy generation number 
Ns,aT is fixed in this case because it is, in general, a function of~ 
(or Ntu), (o, and flow arrangement. The special form taken by 
Ns,aT in the case of balanced counterflow heat exchangers in the 
ideal limit (small AT and AP's) is listed as the first term on the 
right-hand side of Eq. (41), or as the sum of the first and third 
terms in Eq. (47). The general Ns,ar expression for cross-flow 
heat exchangers is given by Sekulic and Herman. '7 

In conclusion, the overall irreversibility of the heat exchanger 
Ns varies on account of the two fluid flow irreversibilities, 
Ns.ap z and Ns,ap 2. These two flow terms are coupled through the 
constant-Ntu constraint (Eq. 44) so that there exists an optimum 
pair of flow-passage slenderness ratios for which Ns (or 
Ns ae, +Ns aP2) is minimum. The presence of this optimum is 
illustrated qualitatively in Table 1, where A represents the sign 
of the change in the indicated quantity. 

Table 1 demonstrates that as the slenderness ratio of one 
passage increases, the slenderness of the companion passage 
decreases, and vice versa. The Ns.Ap-type terms of Eq. (66) 
increase monotonically with their respective (4L/Dh) ratios, 
hence the conclusion constructed in the right of the table. The 
search for the thermodynamic optimum was carried out 
numerically for certain heat exchanger surfaces in cross flow: ~ 7 
A sample of this work is reproduced in Figure 4. The overall Ntu 
constraint is listed on each of the V-shaped curves. As Ntu 
increases, the optimum slenderness ratio of one side of the 
surface increases. 

This optimization procedure of trading N s al~l for N s ae. 
makes sense as long as the overall Ns is dominated by pressur~ 
drop irreversibilities, that is, when (NsAP, +NsAp2)> NS,AT. 

H e a t  e x c h a n g e r s  w i t h  n e g l i g i b l e  p r e s s u r e  
d r o p  i r r e v e r s i b i l i t y  

In this section, we take a closer look at the limit in which the 
Ns.Ap terms are negligible in the general expression (Eq. 66) 

N s_~ NSAT (67) 

Much of the attention being devoted to this limit in the literature 
is centered on the seemingly paradoxical conclusion that the 
irreversibility of these heat exchangers decreases both as e---* 1 
and as e---* 0. I was the first to write about this paradox 5 in 1980 
when I inked and published a pencil drawn example used by 
Professor Tribus in his Thermoeconomics class at M.I.T. 19 
Back then I felt the origin of this paradox was clear and that the 
"entropy maximum" associated with it is of little practical 

N s 

0.1 

Ntu = 2 

4 

5 6 

9 1 0  

o.o't t I I I I I I  I I t t I I I I 
1( 103 104 

(4L/Dh) 1 

Figure 4 The minimization of entropy generation number subject 
to constant overall N m (results refer to a compact cross-flow heat 
exchanger with (0=0.5; inlet temperature ratios T 1/T2=0.8; and two 
surfaces, 18 namely, plate fin 11.1 and Iouvered fin 3/8-6.06) 

consequence (see also ref. 1, pp. 28-29). In the meantime, this 
subject continued to draw attention in settings (configurations) 
considerably more general than the original balanced 
counterflow example. In fact, the essential idea of the existence 
of a maximum N s versus e was rediscovered independently on 
three other continents. 2° 2, 

Reconsidering the maximum entropy paradox 5 is useful 
because it constitutes an excellent illustration of the importance 
of the principle of thermodynamic "isolation" in the 
optimization of an engineering component. Consider again a 
balanced counterflow heat exchanger, for which in the limit of 
negligible pressure drop, the entropy generation rate (Eq. 40) 
reduces to a one-term entropy generation number: 

N s = l n { I I - e ( l - ~ , ) ] I 1  + e ( ~ -  1)]} (68) 

Or using Eq. (46), Ns can be expressed as a function of the inlet 
temperature ratio and the overall Ntu: 

Tt \/ /  T 2 
l + T 2  Ntu)k 1 + ~ [  gtu) (69) 

N s = In (1 + Ntu) 2 

Figure 5 illustrates the behavior of Ns at constant Tt/T2. The 
entropy generation number is 0 at both e = 0 and e = 1, and its 
maximum is situated exactly at e= 1/2 (or at Ntu = 1). The 
maximum entropy generation number increases as soon as 
T1/T 2 goes above or below 1: 

[-1 1 / T  1 T2 \ ]  
gs . . . .  = l n / 2 + 4 | ~ - + ~ - H  L \ ' 2  ' l / J  (70) 
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Figure 5 Entropy generation rate in a balanced counterflow heat 
exchanger with zero pressure-drop irreversibility 

~ d ~ • , The behavior of Ns in the goo heat exchanger hma (~---, 1) 
is well understood and is expected. The behavior in the ~---,0 
extreme, however, is neither expected nor intuitively obvious 
because we expect any heat transfer irreversibility to increase 
monotonically as the heat exchanger area (or Ntu ) decreases, 
One physical explanation for the anomalous behavior exhibited 
in Figure 5 is that in the e--.0 limit, the stream-to-stream 
temperature difference AT is practically constant and equal to 
17"1 - T2 I. That is, ATis insensitive to the vanishing Nt~. Thus as 
Ntu and the heat exchanger area approach zero, the total heat 
transfer rate between the two streams decreases, as does the heat 
transfer irreversibility. The vanishing Ns seen in the limit e--*0 is 
first and foremost a sign that the heat exchanger disappears as an 
engineering component. So if e---. 1 is the good heat exchanger 
limit, we can view ~--*0 as the "absent heat exchanger limit." 

Heat exchangers, in general, contribute to the overall 
irreversibility of the installations that incorporate them. The 
lower left-hand corner of Figure 5 is technically correct because 
an absent heat exchanger (~=0) can contribute only zero 
irreversibility as a heat exchanger (Ns = 0). However, if we think 
of the power and refrigeration applications that over the past 
two hundred years defined the need for inventing heat 
exchangers, we begin to appreciate the error in associating 
goodness with the declining-Ns trend observed toward r.=0. 
Zero irreversibility is certainly good if the heat exchanger exists 
and does its job; however, a vanishing heat exchanger will 
definitely have a negative effect on the overall irreversibility of 
the mother system. 

The absent heat exchanger limit (e---.0) is a territory in which 
the design changes experienced by the vanishing heat exchanger 
have a profound effect on the irreversibility of the system 
components the heat exchanger is in direct communication 
with. To see how the analysis of the entropy maximum violates 
the principle of system isolation, consider the greater problem of 
minimizing the irreversibility of the Brayton-cycle power plant 
seen already in Figure 3. The power plant has five com- 
ponents: the heater (H), expander, regenerator (R), cooler 
(C), and compressor. The regenerator (R) is the balanced 
counterflow heat exchanger Figure 5 was drawn for. For 
simplicity, we assume the expander and compressor function 
reversibly and adiabatically so that the entropy generation of 
the entire Brayton-cycle power plant (B) has only three 

components: 

'~gen, B = S g e n , H  -'k" Sgen ,R  -t- S g e n , c  (71) 

Dividing by the capacity flowrate rhce (constant), we also have 

Ns, s = NS,H + Ns,R + Ns,c (721 

The Ns, R contribution was labeled N s in Eqs. (68) and (69). 
Moreover, since the expander and compressor function 
isentropically, the traces left by them on the TS diagram of 
Figure 3 would be represented by vertical segments in the 
Brayton cycle. 

Modeling the working fluid as an ideal gas with constant 
specific heat, it is a simple matter to show that the heat engine 
(first-law) efficiency of the power plant (tl) depends on three 
dimensionless parameters: the regenerator effectiveness, ~; the 
overall temperature ratio Tma~/Tmi,; and the absolute 
temperature ratio across the expander or compressor. The last is 
fixed by the pressure ratio, which is assumed given: 

Tma x T, (P,~k/"e 
7-2 Train = ~ j  (73) 

The first-law efficiency formula turns out to be 

r - 1  large(1 - r,m,,11) - r~,~l t + 1 
~/= qarg~(1 -~rsm~,)- (1 -e)r,  ma, (74) 

where rlafg,= Tmax/Tmin, and r,m,, = T, nax/T2. 
Figure 6(a) proves what we expected from the beginning: 

"More" regenerator (larger e,) is always better from the 
viewpoint of upgrading the efficiency of the entire power system. 
Figure 6(b) shows, first, that the irreversibility of the entire system 
(Ns, B) decreases monotonically as e increases (this agrees with 
Figure 6(a) and the Guoy-Stodola theorem2). Figure 6(b) also 

( a )  0 . 5 -  , ,  

0.4 

0.3 1 J I I ] I t I I 
0.5 

(b) 0.s 

NS,B 

O.Z 

NS'C 

0 0  ' ' i J I I i i I 
0.5 

Figure 6 (a) The monotonic dependence between Brayton-cycle 
power plant efficiency and the size of the regenerative counterflow 
heat exchanger (drawn for rtarge=3 and rsmall=3/2; hence, 
T1/T2=O.75). (b) The distribution of power plant irreversibility 
among the three heat exchangers (H), (R), and (C). 
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Figure 7 The irreversibility of imbalanced counterf low heat 
exchangers wi th negligible pressure drop irreversibility and 
T1/T2=0.25 

shows the manner  in which Ns, a is distributed among the three 
heat exchangers (H), (R), and (C). The heater entropy 
generation rate was calculated assuming the heat input 
originates from Tmax and the outlet temperature of the heated 
stream (that is, the inlet to the expander) equals Tmax. That is, the 
heater is assumed to have an infinite number  of heat transfer 
units. An identical model was used for the cooler, where the 
outlet temperature of the cooled stream equals the temperature 
of the cold side of the cooler, Train. 

Sandwiched between NS,H and Ns,c is the irreversibility 
contribution made by the regenerator: This slice has exactly the 
same features as the TJT2 = 0.75 curve that could be drawn near 
the base of Figure 5, namely, zero height at 8 = 0 and e = 1, and a 
maximum at 8 = 1/2. It is now clear that as 8 decreases below 1/2, 
the vanishing of the regenerator has the effect of augmenting the 
heat transfer irreversibilities contributed by the surviving heat 
exhangers so that, overall, the irreversibility of the power plant 
increases monotonically. The only practical significance I can 
attach to the maximum thickness exhibited by the Ns. R slice is 
that it marks the order of magnitude of e (or Ntu ) below which 
the analysis of the regenerator alone is a clear violation* of the 
principle of thermodynamic isolation. 

The heat transfer irreversibility maximum illustrated here for 
balanced counterflow heat exchangers reappears in the analysis 
of other heat exchanger configurations. For  example, Sarangi 
and Chowdhury 2° found it in imbalanced counterflow heat 
exchangers, that is, when (rhce)~#(&Cp) 2. Their results are 
illustrated in Figure 7, where N s is based on the smaller of the 
two capacity rates, (rhcp)2. Sekulic and Baclic 21 plotted it for 

* Indeed, the reason the ideal-limit optimization rules of the preceding 
section enjoy general validity is that the assumption ofvanishingly small 
AT and AP's makes the outlet conditions of the two streams practically 
insensitive to the optimization work performed inside the heat 
exchanger, that is, insensitive to the changes in the already small A T and 
AP's. This decision effectively isolates the counterflow heat exchanger 
from the rest of the power or refrigeration installation it may belong to. 

counterflow and cross-flow heat exchangers, showing also that 
the maximum occurs at e = 1 in parallel flow heat exchangers. 
This last conclusion was drawn also by da Costa and Saboya 22 
in a comparative study of Nszr  for imbalanced counterflow and 
parallel flow heat exchangers. The presence of the entropy- 
maximum feature in the irreversibility of cross-flow heat 
exchangers with negligible pressure drop irreversibility is 
illustrated in Figure 8, where the N s value of each configuration 
has been divided by the respective maximum N s. 

R e m a n e n t  ( f l o w  i m b a l a n c e )  i r r e v e r s i b i l i t i e s  

The study of balanced counterflow heat exchangers led to the 
conclusion that the overall irreversibility of the device decreases 
to zero as the design approaches the ideal limit of infinite overall 
NIu and zero AP on both sides of the surface. In this section, we 
focus strictly on the "perfect" design 

Ntu = oo, AP 1 = AP 2 = 0 (75) 

and our objective is to show that in this limit the heat exchanger 
configurations that are not "balanced counterflow" are charac- 
terized by an unavoidable irreversibility solely due to the flow 
arrangement. For  historical reasons, ~4 and for lack of a better 
name, we refer to this remanent irreversibility as the 
irreversibility due to flow imbalance or remanent irreversibility. 

Consider first an imbalanced counterflow heat exchanoer, 
where 

( & c p h  _ 

~o = (rhCp)2-2 ~ 1 (76) 

and where the perfect design (Eq. 75) means Pt,out=P1, 
P2.out=P2, and 8=1.  The effectiveness-Ntu relations for 
imbalanced counterflow heat exchangers are 

hA1 T1 - Tl,out Tz,out - T2 
Ntu-(~lCp)2, 8=0.) T 1 -  T2 - T 1 -  T2 (77) 

1 - exp[ - Ntu(1 - 09-1)] 
8 = 1 - m-  1 exp[ - Stu(1 - m - t)] (78) 

where (thCp)2 is the smaller of the two capacity flowrates. In this 

N s 

N$. max 

0! 

I 1 I I / I I I I 

;,, LL7 "r ~,:; u°~;.,2. i 
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Count~flow 
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Figure 0 The occurrence of a maximum in the i r revers ib i l i ty  o f  
various heat exchanger configurations in which the pressure drop 
i r revers ib i l i ty  is n e g l i g i b l e  ( T 1 / T 2 = 0 . 5 ,  0 ) = 1  ) 
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Figure 9 The remanent (f low imbalance) irreversibility in parallel 
flow is consistently greater than in counterflow; 
O) = (riTcp) 1 / (rhCo) 2 > 1 

case, the overall entropy generation rate (Eq. 40) has a finite 
value 

Sg~'~ = l n ~ F l - l ~ ( 1 - T 2 ~ ] ' ° T ' ~  (79) 
gs'imbalance=(Yncp)2 L L  f o \  TlJ j T2J 

The imbalance irreversibility of a two-stream heat exchanger 
with phase-change on one side is a special case of Eq. (79), 
namely, the limit co---~ oo, where the stream that bathes side 1 
does not experience a temperature variation from inlet to outlet, 
Tl,ou t = T 1 . For this class of heat exchangers, Eq. (79) reduces to 

Ns,imbal . . . .  - -  T2 1 -- In T2 - T ~ -  ~ '  (~ = ~ ) 180) 

The imbalance irreversibility of two-stream parallel flow heat 
exchangers is obtained similarly, by combining Eq. (40) with the 
perfect-design conditions (Eq. 75) and the e(og, Nt,) relation for 
parallel flow: 15 

l - e x p [ - N t , ( 1  +to 1)] (81) 
~ -  1+o)-1 

The resulting expression is 

N s i m b a l  . . . .  _ -gen = l n ~ / ' 2 ]  / 1 +  l+~oJ 3 (82) 
' (incp)2 [ \ T , /  k .-1 

A first observation is that in the limit of extreme imbalance 
(co---, oo), this expression becomes the same as Eq. (80). In this 
limit, of course, the side 1 stream is so large that its temperature 
remains equal to T 1 from inlet to outlet; seen from the outside, it 
behaves like a stream that condenses or evaporates isobarically. 

A second worthwhile observation is that when the two streams 
and their inlet conditions are given, the imbalance irreversibility 
of the parallel flow arrangement is consistently greater than the 
imbalance irreversibility of the counterflow scheme (Eq. 79). 
Figure 9 shows the behavior of the respective entropy 
generation numbers and how they both approach the value 
indicated by Eq. (80) as the flow imbalance ratio ~o increases. 
Taking the ~o= 1 limit of Eq. (82), it is easy to see that the 
remanent irreversibility of the parallel flow arrangement is finite 
even in the balanced flow case (see also ~o = 1 in Figure 9). 

Overview: the structure of heat 
exchanger irreversibility 

An important structure should be recognized in the heat 
exchanger irreversibility treatment reviewed in the preceding 
three sections. First, there is the competition between heat 
transfer and fluid flow (pressure drop) irreversibilities, whose 
various tradeoffs were illustrated by considering the analytically 
simple limit of nearly ideal balanced counterflow heat 
exchangers. Second, it is essential to keep track of whether the 

T•d[rading Off 

NS, T for N s , p 

/ 

~ anee 

Heat Exchanger 

Figure 10 The structure of the total entropy generation rate of a 
heat exchanger 

optimization of one heat exchanger causes the thermodynamic 
degradation of other components it might be hooked up to in 
the greater engineering system. We saw the violation of the 
principle of proper isolation by reexamining the maximum- 
entropy paradox of heat exchangers with zero pressure drop 
irreversibility. Finally, there is the recognition of remanent or 
flow imbalance irreversibilities, that is, irreversibilities that 
persist even in the limit of perfect heat exchangers (Eq. 75). 

Figure 10 summarizes this structure. The remanent 
irreversibility deserves to be calculated first in the 
thermodynamic optimization of any heat exchanger because it 
establishes the level (order of magnitude) below which the joint 
minimization of heat transfer (finite AT, or Ntu) and fluid flow 
(finite AP) irreversibilities falls in the realm of diminishing 
returns. That is, it would no longer make sense to invest heat 
exchanger area and "engineering" into minimizing the sum 
(Ns,aT+Ns,ap) when this sum* is already negligible compared 
with the remanent irreversibility Ns,imbalanc e. 

Only in very special cases does the entropy generation rate of 
a heat exchanger break up explicitly into a sum of three terms so 
that each term accounts for one of the irreversibilities reviewed 
above: 

Ns = Ns,imbalance + Ns,A r + Ns,AP (83) 

One such case is the balanced counterflow heat exchanger in the 
nearly balanced and nearly ideal limit (to--* 1, A T--*0, AP's--~ 0). 
In general, these three irreversibilities contribute in a more 
complicated way to the eventual size of the overall N s. Deep 
down, however, the behavior of the three is the same as that of 
the simple fimits singled out for discussion. Figure 10 illustrates 
this behavior qualitatively. 

Two-phase f low heat exchangers 

The analysis of other classes of heat exchangers reveals the basic 
structure outlined in Figure 10. One important class is the heat 
exchangers in which at least one of the streams is a two-phase 
mixture. (The irreversibility characteristics of this class were 
discussed first by Bejan 25 and, independently, by London and 
Shah. 26 Detailed sizing rules for thermodynamic and 

* In this summary, NS,Ap is shorthand notation for the combined effect 
of pressure drop irreversibilities (for example, the sum in the square 
brackets of Eq. 41). 
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Figure 11 Entropy generation analysis of two-phase flow through 

thermoeconomic optimization were developed by Zubair et 
a/. 2v) 

Consider Figure 11, which shows the steady flow of a two- 
phase mixture through a duct in thermal contact with a heat 
reservoir of temperature T o . To understand the functioning of 
this heat exchanger, think of the condenser in a Rankine-cycle 
power plant, where To is the absolute temperature of the 
atmosphere. The result of the following analysis, however, is 
quite general. Invoking the first law and the second law for the 
dashed-line control volume shown in Figure ll(a), we find the 
total entropy generation rate is 

Sgen = t ' h (Sou t -  Sin)-~ th(hin -h°ut) ~> 0 (84) 
To 

where rh(hin - hour) is heat rejection rate to the ambient, 0. From 
a design standpoint, we are interested in how the pressure drop 
(AP= Pin-Pout) and the fluid-ambient temperature difference 
(AT-Tin -To)  affect the overall irreversibility level, Sgen. 
Assuming the inlet and outlet states are both in the two-phase 
domain (Figure 11), we write 

Sou t - -  Sin ~ (S a - -  Sin) d- (Sou t - -  Sa) (85)  

where the auxiliary state (a) is defined by the two properties 

Ta = Tin and h a -= hou t (86) 

That is, the auxiliary state (a) represents the outlet state (out) in 
the theoretical limit of zero pressure drop. We note further 

Tin(S a - -  Sin ) =  h a - -  hin 

= hou t - hin (87) 

Combining Eqs. (84)--(87), we find that the entropy 
generation rate separates into two terms: 

where, quite visibly, the first term represents the contribution 
due to imperfect stream-ambient thermal contact, whereas the 
second term accounts for the pressure drop irreversibility. In the 
limit of sufficiently small AP, the relationship between (Sou t --Sa) 
and AP can be expressed analytically as 

AP 
Sou t - -  S a = [h~- Tins~ +  Xout(h~g - Tins~g)] ~ (89) 

where the prime means d( )/dP, and Xow is the quality of the 
outflowing mixture. Properties at saturation such as hr, sf, hrg, 
and sfg, are known functions of pressure (or temperature). 
Therefore, the quantity in the square brackets in Eq. (89) can be 
calculated once the absolute pressure and the outlet quality are 
known. The quantity calculated in this manner has the units of 

Tin - 
Tou t -- _~f "J g 

a heat exchanger duct 

specific volume; for it, we therefore may substitute the 
shorthand notation ~(Pin, Xout)" Using this new notation, the 
entropy generation rate assumes now a more familiar form: 

• AT th~ 
S*¢" = Q ~ + --Ti. AP (90) 

heat transfer fluid flow 
irreversibility irreversibility 

Repeating the analysis for a duct of length dz, where the 
longitudinal coordinate z is measured in the direction of the 
flowrate ~h, we obtain the per-unit-length result 

dS~e . AT dO th~ / dP\ 
d2 - T i n  2 dzz q - ~ i n ~ - d z z )  (91 )  

This result contains the additional assumption that 
(Tin - To)~ Tin. The structure of Eq. (91) is the same as that of 
entropy generation formulas encountered earlier. Therefore, by 
combining Eq. (91) with appropriate correlations for heat 
transfer coefficient and pressure drop in two-phase flow, it is 
possible to select a design (for example, duct inner diameter) so 
that dCS~en/dz is minimum. 

If the duct of Figure 11 is surrounded by still air, and if Tw is 
the wall temperature, the local rate of entropy generation 
becomes z5 

dS"gen fdO/dz'~2[- 1 1 ~ in~/ dP\ 
dz -~T~-i~) [ ( ~ i + ( ~ o J + T i n k  - ~ - z )  (92) 

In this expression, p and h denote the wetted perimeter of the 
duct cross section and the heat transfer coefficient, and 
subscripts i and o stand, respectively, for the inner side and outer 
side of the duct wall. In writing only one pressure drop term in 
Eq. (92), we are assuming the flow outside the duct is driven by 
buoyancy effects. The entropy generation rate is due to only 
three contributors: the imperfect thermal contact between two- 
phase mixture and wall, the imperfect thermal contact between 
wall and ambient, and finally, the flow with friction through the 
duct. 

If the tube of Figure 11 is surrounded not by a stagnant fluid 
reservoir but by an evaporating stream at a lower temperature, 
the entropy generation rate for this two-stream heat exchanger 
is 25 

dSgen [- 1 //d0"~ 2 thb dP 

+ r  1 fd(2~ 2 dP 
L T ~ k ~ z  j + ~ - ( - ~ z ' ) ]  c (93, 

where subscripts H and C represent, respectively, the 
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condensing (hot) and evaporating (cold) sides of the heat 
exchanger surface. Note further the first law of thermodynamics 
requires (dQ/dz)n = (dQ/dz) o The competition between heat 
transfer and fluid flow irreversibilities, or the opportunity for 
reaching a thermodynamic optimum based on the proper 
selection of duct geometry, is evident in both groups of terms on 
the right-hand side of Eq. (93). 

Finally, regarding the shorthand notation ~ for the quantity 
in the square brackets in Eq. (89), it is important to keep in mind 
the geometrical layout of the Ts diagram of Figure 11, on which 
the ~ expression is based. Regardless of whether the process 
(in)--,(out) represents condensation or evaporation, it was 
assumed that the fictitious isenthalpic process (a)---~(out) is 
situated fully inside the two-phase dome. If the tube of Figure 11 
works as a condenser, the outlet state will be situated on the left- 
hand frontier of the dome; that is, (out)-((f) .  In this case, the 
role of (a) will be played by a slightly subcooled (compressed) 
liquid state, and the process (a)---~(out) will be executed by a 
single-phase stream. Invoking dh = Tds + vdP and the constancy 
of enthalpy from (a) to (out), it is easy to prove that when (out) 
means saturated liquid, ~ must be replaced by yr. 

Similarly, if the stream boils so that the outlet state is a single- 
phase saturated vapor state, (out) is replaced by a state (g) 
situated on the right-hand side of the two-phase dome. If the 
orientation of the constant-enthalpy line that passes through (g) 
is such that (a) would be situated outside the dome (to the right), 
then, based on the argument of the preceding paragraph, ~ is 
replaced by %. Conversely, if the orientation of the constant- 
enthalpy line would make (a) fall inside the dome, the correct 
expression is the one listed in square brackets in Eq. (89). In this 
last case, Xou t = I. 

Other heat exchanger configurations and 
ways of measuring irreversibility 

In the years since the pioneering papers of the 1970s, the 
calculation and minimization ofirreversibility in heat exchanger 
design has become a self-standing topic that continues to gather 
momentum. For  example, this topic recently attracted Professor 
London, 28 a creative, influential figure whose long Stanford 
career had a lot to do with the streamlining and popularization 
of first-law analysis in heat exchanger design. Through him, the 
language of second-law analysis was spoken also in the 
prestigious Max Jakob Award acceptance lecture (Denver, 
1985). In this section, we review several additional advances in 
heat exchanger second-law analysis, placing special emphasis 
on alternative approaches that have been proposed for the 
dimensionless reporting ofirreversibility (that is, in place ofNs). 

Extensions to the study of entropy generation in counterflow 
heat exchangers ~4 have been published by Sarangi and 
Chowdhury 2° and Huang. 29 A study of compact crossflow heat 
exchangers was conducted along similar lines by Baclic and 
Sekulic. 3° Their study reveals once again the tradeoff between 
heat transfer and fluid flow irreversibilities, and the remanent 
(flow imbalance) irreversibility associated purley with the cross- 
flow arrangement. Basic studies of the thermodynamics of 
forced convection heat transfer were also undertaken by Dr. 
Soumerai in Switzerland. 31 33 The relationship between 
irreversibility minimization and cost minimization was 
illustrated by Wepfer et al. in the problem of deciding the 
optimum size of a steam pipe and its insulation, a'* 

A new and promising direction has been traced in a sequence 
of studies by Professor Zilberberg) 5-38 He draws attention to  
the unsteady (often periodic) character of the operation of most 
power and refrigeration plants and to the irreversibility due 
solely to this unsteadiness. He calls this effect dynamic 
irreversibility. Problems of plant start-up and shut-down also 
fall in the domain identified by Professor Zilberberg, as does the 
basic thermal energy storage problem reviewed in the next 
section. 

The design principle that works at the component and 
subcomponent level also works at the overall system level. In the 
realm of heat exchanger design, then, it is worth noting the 
application of second-law concepts to the optimization of entire 
heat exchanger networks. Studies of this kind have been 
contributed most recently by Chato and Damianides 39 and 
Hesselmann. 4° 

Finally, we turn our attention to the choice of dimensionless 
reporting of the calculated irreversibility figure. In most of the 
examples reviewed until now, the entropy generation rate was 
nondimensionalized by dividing it through a capacity flowrate, 
say, (~lCp) 2 in the case of imbalanced two-stream heat 
exchangers (Eq. 79). The entropy generation numbers that can be 
defined in this manner (Ns, Ns AT, Ns AP~, and so on) are second- 
law "relatives" of the older concept of number of heat transfer 
units (Ntu), which is used in traditional first-law analyses of heat 
exchangers. And just like the Ntu, the N s value can vary from 0 
all the way to go : Whether the calculated Ns represents a high or 
low entropy generation rate depends on the size of heat 
exchanger Ns that can be economically tolerated (see the 
discussion centered on Eq. 83), on the magnitude of the 
remanent irreversibility, Ns,imbalanc e (Figure I0), and certainly, 
on the entropy generation levels shown by the other 
components that make up the greater system. 

In some problems it is possible to nondimensionalize S'oen by 
dividing it through a known entropy generation rate, which is 
regarded as reference. An example of this kind is the 
augmentation entropy generation number Ns, a (Eq. 18). 

Another dimensionless measure of heat exchanger 
irreversibility is the rational (second-law) effectiveness 
introduced by Bruges 4~ and Reistad: 42 

availability (exergy) gained by the cold stream 

eg = availability (exergy) donated by the warm stream 

thc(e . . . .  t - ex, in)c (94) 

- -  r h n  ( e x , i  n - e x , o u t )  u 

This quantity varies monotonically with the entropy generation 
number N s: 

roSg~n 
eR= 1 thH(ex,in --e . . . .  t)H 

= 1 ToCp'H Ns (95) 
(ex, in - -  ex,out)H 

where, for the sake of the argument, Ns = Sg,n/(n~Ce)n, and T O is 
the absolute temperature of the ambient. In the limit of 
reversible heat exchanger operation (zero AT and AP's), ~g is 
equal to I. The lowest possible value for e g is 0: This occurs in 
the limit in which the heat exchanger physically disappears. 
Assuming the pressure drop irreversibility contribution is 
negligible, Golem and Brzustowski .3 showed e R reduces to 

+ (thCp)c-[T°ut- Tin-  To ln{T°ut/Tin)]C (96) 

eR= - (rhCp)H[Tout - Tin To ln(Tout/Ti.)]H 

where the subscripts in and out refer to the outlets and inlets, 
respectively, the + sign applies to counterflow, and the - sign 
to parallel flow. Equation (96) holds for ideal gases and for 
incompressible liquids with negligible pressure drop. The same 
authors extended the e R concept to the local level, showing that 
when the longitudinal temperature distributions Tc(x ) and 
TH(x ) are known, one can evaluate locally the destruction of 
exergy via heat transfer across the stream-to-stream 
temperature difference. 

The newest proposal for the dimensionless reporting of heat 
exchanger irreversibility is due to Professors Witte and 
Shamsundar 44 of the University of Houston. Their second-law 
heat exchanger efficiency is defined as 

r°Sgen (97) 
qw-s = 1 - Q 
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where Q is the total stream-to-stream heat transfer rate, 

= ~/H(hin - -  hout)H = t h c ( h o u t -  hin ) c  (98) 

The reason for choosing the efficiency expression (Eq. 97) is that 
while evaluating the thermodynamic imperfection of a real heat 
exchanger by comparing it with an ideal one that operates 
reversibly, Witte and Shamsundar regard Q as fixed. The r/w. s 
efficiency is related to e R and N s in the following ways: 

T0Cp,H 
qw-s = 1 Ns 

(hi, - hout) H 
(99) 

(100) 1 -- r/W-S rex,in - e  . . . .  t~  

where N s was defined again as '~gen/(/hep)H' If pressure drops are 
neglected, a visually pleasing alternative to writing r/w. s is 44 

qw-s= 1 + -  TO -To (101) 
Trt Tc 

where TH and Tc are two average temperatures defined by 

out h 
. -- ( f i  °ut dh ~ (102) 
~ H , C - - / ¢ o u t  ~ J 

\~ in  aS/H,C 

It can be demonstrated that the highest value of the Witte- 
Shamsundar efficiency is t/w. s = 1 and that it occurs in the limit 
of reversible operation. The same conclusion is reached by 
substituting e R ~< 1 into Eq. (10O). Not noted until now is that ~/w- 
s can assume negative values, and its full range is - ~ < ~/w-s ~< 1. 
A negative ~/w-s value would characterize a counterflow heat 
exchanger working at cryogenic temperatures (for example, 
To=300K , T n = 3 0 K  , Tc=26 K; hence, ~/w_s = -0.54).  

T h e r m a l  e n e r g y  s t o r a g e  

Energy storage versus exergy storage 

The growing emphasis placed on energy conservation measures 
has renewed the interest in thermal energy storage systems, 45 
that is, in the type of system whose job is to store temporarily the 
energy received during a heat transfer interaction. A system like 
this is capable of providing at a later time a heat transfer 
interaction of its own. The traditional view in this design area is 
that a storage unit is efficient when the energy increase 
experienced during the storage phase approaches the maximum 
energy increase the unit is capable of. For  example, a batch of 
incompressible liquid of mass m, constant specific heat c, and 
initial temperature To can experience a maximum energy 
increase equal to me(T®- To) if the temperature of the heat 
source that heats the batch is T~. In the traditional sense, the 
goodness of this unit can be quantized in terms of a first-law 
efficiency ratio 

actual energy increase me(T-  To) 
- (103) 

~/l maximum energy increase mc(T~ - To) 

where T is the temperature of the batch of liquid at the end of the 
storage process. 

The first-law efficiency ~i can have values greater than 0 and 
less than 1. The desirable limit qi-+ 1 is approached through a 
number of design decisions, for example, by increasing the size 
of the heat exchanger placed between the liquid batch and the 
heat source and by increasing the time of thermal 
communication between heat source and storage material. 

The traditional view was challenged on thermodynamic 
grounds in 1978. 46 It seemed that if the upgrading of power 
system performance depends on the designer's ability to 
eliminate or, at least, reduce irreversibilities, the real purpose of 
using storage systems in the power-system area must also be the 
reduction of irreversibility. And if the reduction of irreversibility 
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amounts to an exergy flow that is more nearly "conserved' as it 
descends through the power plant, the mission of the storage 
device is to temporarily store exergy, not energy. This new 
viewpoint has developed into a distinct subfield in the thermal 
design of energy storage systems, as exemplified by the recent 
work of Krane, 47'4s Mathiprakasam and Beeson, 49 and 
Taylor. 5° 

The opt imum duration of the storage process 

The destruction of exergy in a storage system and the 
opportunity for minimizing this destruction become apparent if 
we examine the first phase (storage phase) in the operation of the 
system sketched in Figure 12. (An extensive treatment of this 
example is given in ref. 46, as well as in ref. 2, ch. 8.) The storage 
system (the left side of the figure) contains the batch of 
incompressible liquid (m, c) alluded to earlier. The liquid is held 
in an insulated vessel. The hot gas stream rh enters the system 
through one port and is gradually cooled as it flows through a 
heat exchanger immersed in the liquid bath. The spent gas is 
discharged directly into the atmosphere. As time passes, the 
bath temperature T and the gas outlet temperature Tou t 
approach the hot gas inlet temperature, To~. 

Focusing on the irreversibility of the energy storage process, 
we see in Figure 12 that the irreversibility is divided between two 
distinct parts of the apparatus. First, there is the finite-AT 
irreversibility associated with the heat transfer between the hot 
gaseous stream and the cold liquid bath. Second, the stream 
exhausted into the atmosphere is eventually cooled down to To, 
again by heat transfer across a finite AT. Neglected in the 
present model is the irreversibility due to the pressure drop 
across the heat exchanger traveled by the stream th. 

The combined effect of the competing irreversibilities noted in 
Figure 12 is a characteristic of all sensible-heat energy storage 
systems. Because of it, only a small fraction of the exergy content 
of the hot stream can ever be stored in the liquid bath. To see 
this, consider the instantaneous rate of entropy generation in the 
overall system delineated in Figure 12: 

~Sge, =rhcp In T° +Q° + d (me In T) (104) 
To~ T o d t  

where Qo=~hcp(Tout--To). More important than Sge, is the 
entropy generated during the entire "charging" time interval 0-  
t, which can be put in dimensionless form a s  4 6  

; L Sgendt=O In +z  + ln ( l+z r / i ) -~q i  (105) 
mc 

where qi is given by Eq. (103), and 

T ~ - T o  o=thcp r = , t (106) 
T O mc 

Multiplied by To, the entropy generation integral Sto Sge.dt 
calculated above represents the bite taken by irreversibilities out 
of the total exergy supply brought into the system by the hot 
stream. On this basis, we define the entropy generation number 

Figure 

Internal External 

irreversibility ir reversibility 
/ ~ "k / ~ \ 
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.////////////////f/x////////////////z 
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12 Two sources of irreversibility in a batch-heating process 
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N s as the ratio of the lost exergy divided by the total energy 
invested during the time interval 0-t, 

~i 't'ql -- In(1 + rqI) (107) Ns(O, r, Ntu)=tz x Sge, dt= 1 0[z-In(1 +T)] 

This particular entropy generation number takes values in the 
range 0-1, the Ns=O limit representing the elusive case of 
reversible operation. Worth noting is the relation N s = 1 - qil, 
where qli is the second-law efficiency of the installation during 
the charging process. 

Charts of the Ns(O, z, Ntu ) surface s h o w  2'46 that N s decreases 
steadily as the heat exchanger size (Ntu) increases. This effect is 
expected; in fact, it matches the N~u-related conclusion drawn 
based on first-law arguments (Eq. 103). Less expected is that N s 
goes through a minimum as the dimensionless time 0 increases. 
For example, the optimum time for minimum N s can be 
calculated analytically in the limit z< 1, where Eq. (107) reduces 
to 

1 
N s = 1 - ~ [ 1 - exp( - yO)] 2 (108) 

and 

y =  1 - exp(-  N~), Nt~ - h. bAb (1091 
mce 

The solution of the equation ONs/30 = 0 is 

0opt -~- 1.25611-exp(-Xtu) ] ~ (110) 

that is, for the common range of Ntu values (1-10), the optimum 
dimensionless charging time is consistently a number of  order 1. 
This conclusion continues to hold as z takes values greater than 
1 46 

Away from the optimum charging time illustrated above 
(when 0--~0 or 0--.oo) the entropy generation number N s 
approaches unity. In the short-time limit (0< 0opt), the entire 
exergy content of the hot stream is destroyed by heat transfer to 
the liquid bath, which was initially at atmospheric temperature, 
T o. In the long-time limit (0~> 0opt), the external irreversibility 
takes over: In this limit, the used stream exits the heat exchanger 
as hot as it enters (Tout = T~o), and because of this, its exergy 
content is destroyed entirely by the heat transfer (or mixing) 
with the T O atmosphere. The first-law rule of thumb of 
increasing the time of communication between heat source and 
storage material (Eq. 103) is counterproductive from the 
viewpoint of avoiding the destruction of exergy. 

The optimum size of the heat exchanger 

Continuing the example constructed based on Figure 12, we 
inquire into the effect of heat exchanger Ntu on the overall 
irreversibility of the energy storage phase. In the study of heat 
exchanger irreversibilities, we learned to expect a tradeoff with 
respect to Ntu, as a result of the competition between heat 
transfer and fluid flow irreversibilities. The same tradeoff 
appears in the design of the heat exchanger of Figure 12 as soon 
as we take into account the pressure drop (AP) between the 
stream inlet and outlet. It has been shown that when the 
pressure drop entropy generation is not neglected, the N s 
expression (Eq. 107) contains an additional term, .6 now labeled 
Ns,ae: 

(R/cp)fg2Ntu 27ql- ln(1 +zql) 
N s = [ r - l n ( l + Q ] S t  ~-1 0 [ z - l n ( I + z ) ]  

(10T) 

l~s,Ap NS,AT or ~rs of Eq. (107) 

In this additional term, f and St represent the friction factor and 
Stanton number on the gas side of the heat exchanger. It is also 
being assumed that the overall Ntu, defined in Eq. (109), is 
practically equal to the number of heat transfer units for the gas 
side of the heat exchanger. Finally, the dimensionless mass 
velocity g is defined according to Eq. (51). In the case where the 
NS,AT part has already been minimized with respect to 0, the 

optimum Ntu that minimizes the whole N s expression (Eq. 107') 
is 4-6 

N _ ln[-Z2q_l( 1 - ' l i ) ]  _ l n f R g 2 f ~  
tu,opt-- L 1 "}-"C~]I J ~ceStJ (111) 

In the optimum charging time regime, the first term on the right- 
hand side depends only on r. Therefore, the optimum number of 
heat transfer units depends only on r and the group (RgZf/cpSt). 
Since for most heat exchanger surface types, the ratio f /S t  is 
only a weak function of Reynolds number, the optimum Ntu 
depends primarily on z and g. 

Storage followed by removal of exergy 

The two optima analyzed until now rule the design of more 
complex processes executed by energy storage systems. A 
necessary step in the direction of completing the 
thermodynamic treatment of these systems was taken by 
Professor Robert J. Krane of the University of Tennessee, who 
considered the cyclical operation of the device. 48 Figure 13 
shows the schematic evolution of the liquid bath temperature 
during the storage phase and the exergy removal phase that 
follows immediately. The liquid temperature varies periodically 
without ever reaching the limiting temperature levels To and T~. 

Figure 14 provides insight into the irreversibility composition 
of the storage and removal cycle. The only parameter that varies 
in this example is the duration of the storage part of the cycle, 0. 
The storage part is accompanied by the irreversibilities 
discussed already, namely, the contributions due to heat 
exchanger AT, heat exchanger AP, and the dumping of the used 
stream into the atmosphere, The exergy removal part of the 
cycle is plagued by irreversibilities due only to heat exchanger 
AT and AP. The gas stream rh r heated by the liquid pool during 
the removal phase--the fruit of the entire scheme--is delivered 
to a power cycle that can use its exergy content. In Figure 14, the 
two pressure drop effects (during storage and removal) are 
shown added up under the same curve. 

Krane's Figure 14 begins to show the importance of fine- 
tuning the timing of the storage and removal phases to minimize 
the cycle-integrated destruction of the original exergy content of 
the hot stream (rh, T~). The optimization of the whole cycle and 
the gas-liquid heat exchanger can be accomplished numerically 
by minimizing the total N s with respect to the charging interval 
(0) and the heat exchanger size (Nt~). For the design case 
illustrated in Figure 14, Krane obtained 

0opt = 0.863, optimum charging (storage) interval 
Ntu.opt = 5.53, optimum number of heat transfer units 
Ns,mi, -= 0.734, minimum entropy generation number, that is, 

qn = 0.266 (under the same conditions, ql = 0.577) 

TemperatureT~, t 

T i , 

T O 

I I o o+o, 

Figure 13 The batch-system temperature evolution 
complete exergy storage and exergy removal cycle 

~me 

during a 
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stora ~ t ime  

Figure 14 The effect of charging time on the irreversibilities of the 
storage and removal cycle 

The inlet temperature of the stream of cold gas rh r was assumed 
to be the same as To. The dimensionless time interval of the 
exergy removal part of this cycle, 0 r, was found to be equal to 
1.83. Other parameters held fixed during this optimization 
example are 

ghr T i 
- - =  1, ~1 = 0.0354, - - =  1.1, 
,h To 

R (112) 
Pr=0.71, - -=0 .286  

Cp 

The dimensionless pressure drop ratios (AP/P) during the 
storage and removal phases were 0.021 and 0.01, respectively. 

The conclusions reached during the study of the storage phase 
alone are reinforced by Krane's study of the complete storage 
and removal cycle. The optimum storage time interval, for 
example, is such that in dimensionless terms it emerges once 
more as a number of order 1. There exists again an optimum 
number of heat transfer units for the gas-liquid heat exchanger. 
The minimum N s values revealed by Krane's study are generally 
greater than the values encountered in the study of the storage 
phase alone. A6 This effect is due to the irreversibilities 
contributed by the exergy removal phase of the cycle. 

Figure 14 makes the point that the task of perfecting the 
thermodynamic performance of storage system hinges on the 
ability to minimize the heat transfer across three temperature 
gaps, namely, the AT between gas and liquid during both 
storage and removal and the AT between the stream exhausted 
at the end of the storage phase. These AT's can be reduced by 
bringing the inlet temperature of the stream closer to the 
temperature of the liquid bath and by keeping the exhaust 
temperature Tou t as close to T O as possible. This proposal can be 
executed in strikingly simple fashion by using a large number of 
storage units positioned in series. During the storage phase, the 
stream exhausted by the i unit becomes the exergy source stream 
of the (i + 1) unit, and so on. 2 That is, the stream exhausted by 
the i unit does not reject heat to T O but to a higher 
temperature--the temperature of the (i + 1) unit. 

In the series arrangement described above, the temperature of 
the storage units decreases monotonically in the direction of 
flow. During the exergy recovery phase, the cold stream is led in 
the opposite direction, that is, the direction of increasing 
temperature, or in counterflow relative to the stream used 

during the storage phase. The AT's between the stream and 
storage material and the exhaust stream and ambient are 
considerably smaller in this arrangement. This proposal was 
investigated in great detail by Taylor 5° based on a solid 
"distributed storage element" model, in which the storage 
material temperature varied continuously along the stream. 
Taylor shows, among other things, that the longitudinal con- 
duction of heat through the storage material during the periodic 
operation of the heat exchanger can have a major impact on the 
overall irreversibility of the installation. The overall 
irreversibility figure Ns is again a strong function of the time 
interval required by the storage part of the cycle: The 
identification of the optimum storage time interval is critical. 
The overall N s is affected also by the geometric aspect ratio of 
the storage material. The numerical examples documented in 
Taylor's study reveal N s values that cover the range 0.2-0.8. 
This range compares favorably with the 0.7-0.9 range covered 
by the Ns results obtained for a single sensible-heat element 
during complete storage and removal cycles. 48 

The cyclical storage and removal of exergy from a continuous 
one-dimensional stretch of storage material was studied also by 
Mathiprakasam and Beeson. 49 One interesting effect illustrated 
by these authors is that of the direction of flow during the 
removal phase. They found that the second-law efficiency 
( 1  - Ns) is always lower if the exergy-removal stream flows in the 
same direction as the original exergy-supply stream (that is, in 
parallel), lower than in the counterflow arrangement discussed 
in the preceding paragraph. The relative inferiority of the 
parallel flow arrangement was also illustrated by Taylor. 5° 

Closely related to the continuous one-dimensional storage 
scheme with periodic counterflow circulation is the class of 
periodic heat exchangers recognized as "regenerators." The 
design of this type of heat exchanger was approached on the 
basis of entropy generation minimization by San, Worek, and 
Lavan. 51 Their model consists of two-dimensional parallel- 
plate channels sandwiched between slabs of energy storage 
material. The longitudinal conduction of heat through the 
storage material is neglected. An important difference between 
this regenerator model and the continuous storage system 
analyzed by Taylor 5° is that in the case of the regenerator the 
stream exhausted during the storage phase is not dumped into 
the atmosphere. That stream and the exergy still left in it are 
considered usable. Therefore, the total entropy generation 
figure of one full cycle in the operation of the regenerator is 
due to four contributions, namely, the AT- and AP-inspired 
irreversibilities of the storage part and the removal part of the 
cycle. 

Worthy of mention in this section is the thermodynamic 
investigation of another simple device for temporary exergy 
storage, one where the heating during the storage phase is 
provided by an electrical resistance (Joulean heating). 47 Three 
sources of irreversibilities are identified in the operation of this 
device: the electrical resistive heating itself, the heat transfer 
across the finite AT between the storage material and the stream 
used during the exergy removal phase, and the flow with 
pressure drop through the heat exchanger built between the 
stream and the storage material. The entropy generation 
numbers (Ns) revealed by this study fall in the range 0.6-0.8. 

Heating and cool ing subject to t ime constraint 

Related to the lumped system model sketched in Figure 12 is the 
metallurgical problem of heating an object to a prescribed 
temperature level 52.53 and the cooldown problem of cryogenics, 
where large-scale superconducting windings must first be cooled 
to liquid helium temperature before they can be operational. 54 
For the sake of concreteness, consider the cooldown process by 
which the lumped system (m,c) is cooled from an original 
temperature T i to a lower temperature Tf by a single-phase 
stream (thcp) whose temperature T L is lower than Tf. The 
expensive commodity in this operation is the total amount of 
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cold gas used to do the job: 

i 'c too_,= #h(t)dt (113) 
dO 

where t~ is the duration of the cooldown process. The total mass 
m0_,~ is an expensive commodity because it is directly 
proportional to its exergy content and to the actual refrigerator 
power required to produce it. 

When the cooldown time is fixed by logistic and economic 
considerations, there exists an optimum cold-gas fiowrate 
history #h(t) that minimizes the overall expenditure of cryogen, 
m0-t • (The details of the model and analysis that produces this 
result 52'54 are given in ref. 2, pp. 166-169.) The optimum 
flowrate history is 

• [- ]~b( Z)Ab]  1/2 j (114) 

where C* is a constant that depends on the overall cooldown 
time to. 

In conclusion, the optimum flowrate is time-independent only 
in those cases where hb and Ce do not vary as the temperature of 
the ensemble decreases. In general, however, the overall heat 
transfer coefficient varies with the temperature: From the 
optimum cooldown regime (Eq. 114), we learn that during 
periods of poor heat transfer (low hb), the coolant flowrate must 
be decreased. If during the same cooldown run, the specific heat 
of the cold gas (Ce) increases as T decreases (as in N i gas at 
constant P, for example), the coolant flowrate must again 
decrease. The optimum flowrate #ho0t(t ) depends on T indirectly, 
via hb(T) and cp(T). 

Mass exchangers 

The thermodynamic optima identified in the study of heat 
exchangers and related heat transfer applications surface again 
in the thermodynamic design of mass transfer devices. The work 
on the minimization of entropy generation in the mass transfer 
domain is even newer than what has been accomplished in heat 
transfer; therefore, one of our objectives in this section is to place 
in perspective the newly emerging subfield of mass-transfer 
thermodynamic design. 

Convective mass transfer 

As an analogy to the most basic problem of heat exchanger 
irreversibility at the flow-passage level (investigated in refs. 2 
and 3), the competition between fluid flow and mass transfer 
irreversibilities in a mass exchanger was studied by San, Worek, 
and Lavan. 55 The general expression for the rate of entropy 
generation in a flow field with both heat and mass transfer and 
without body force and chemical reaction effects is 56 

,,, 1 1 Sgen=--~i ji.Vlxi-.I-@~-~q. VT-~2siJi. (115) 

mass diffusion fluid thermal coupling between 
friction diffusion thermal diffusion 

and mass diffusion 

where Ji is the mass diffusion flux vector of the i species, and si the 
partial molal entropy of the species 

gi = --tOT~p.Nk, (k¢~) (116) 

Worth noting is Eq. (28) as a special case of Eq. (115), namely, 
the limiting case of zero mass transfer. In the zero heat transfer 
limit, on the other hand, we retain only the first two terms on the 
right-hand side of Eq. (115) and concentrate on the interplay 
between fluid friction and mass diffusion irreversibilities. 
Regarding the chemical potential gradient that appears in the 
mass diffusion term, we recall from the study of convective mass 

transfer (ref. 4, ch. 9) that the mass transfer part of the problem is 
usually described in terms of species concentration 
distributions, Ci [moles of i/m3], not in terms of chemical 
potential. Useful then is the invocation of the ideal gas mixture 
model, 

- Pi 
# i ( T ,  P i )  = p i ( T ,  Po) + R T  In - -  ( l  1 7 )  

P0 

where the partial pressure of i in the mixture of pressure Po and 
temperature T is 

Pi = Cil~T (i18) 

If, in addition, we invoke Fick's law of mass diffusion, 

Ji = - D i  "VCi (119) 

the entropy generation expression (Eq. 115) reduces to 55 

s~',, = k ~ -Di (VCi)2 + P q) (120) 
i Ci T 

This two-term expression is the analog of Eq. (30) of 
convective heat transfer• For example, in the case of two- 
dimensional flow (Vx, vr) through the space (x, y) in which only 
the i species diffuses, Eq. (120) reads 

f2F/~vx~ 2 /,~v~\2G /~TVx ~Tvy~ ~7 

Both terms on the right-hand side of Eq. (121) are positive, 
indicating the permanent collaboration between fluid friction 
and mass diffusion in determining the irreversibility rate at each 
point in the flow field. The similarity between Eqs. (121 ) and (31 ) 
of convective heat transfer assures us that the thermodynamic 
tradeoffs discovered in the field of heat transfer and thermal 
design exist also in the design of mass transfer devices. San, 
Worek, and Lavan 55 demonstrated this by considering the 
design of a two-dimensional mass exchanger in which the fluid 
mixture flows through a parallel plate channel with imposed 
uniform mass flux ofi normal to the flow. They also assumed the 
"small diffusion rate" limit, in which the velocity profile in the 
channel cross section is not affected by the species that diffuses in 
the direction normal to the flow. Minimizing the entropy 
generation rate integrated over the channel cross section, San, 
Worek, and Lavan s 5 developed a complete sizing procedure for 
the plate-to-plate spacing of the channel, for both laminar 
and turbulent flow. Their paper and results are highly 
recommended. 

Simultaneous mass and heat transfer by convection 

The problem of entropy generation minimization in combined 
convective heat and mass transfer was considered in a 
subsequent paper by San, Worek, and Lavan. 57 As indicated by 
Eq. (115), in this case, the irreversibility is due to four distinct 
effects: pure mass diffusion, fluid friction, pure thermal 
diffusion, and the couping between thermal diffusion and mass 
diffusion. After involving one more time the Fick and Fourier 
laws of diffusion, the local entropy generation rate (Eq. 115) can 
be written as 

s['en = t 6" ~, Di (VCi)2 + P ~il + ~ (V T) 2 
i Ci T T 

+ 1  i~ giDi(VCi)" (VT) (122) 

Whether all four terms are important in the final s~"~, figure 
depends, of course, on the particular convection problem being 
investigated. For  example, consider the heat and mass transfer 
to fully developed laminar flow through a parallel-plate channel 
of size (spacing) D, and let ACI and AT represent the scales of the 
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wall--mean concentration and temperature differences. Taking 
/~ as the scale of s~ in Eq. (122), the importance of the fourth term 
(coupling) relative to the first term (mass diffusion) is measured 
by the ratio 

heat and mass transfer coupling A T / T  (123) 

pure mass diffusion ACi /C i 

We see here the emergence of another family of dimensionless 
groups for second-law analysis, namely, the dimensionless 
ratios (AC/C)i. In the description of mass tranfer irreversibility, 
these ratios play the same role as the A T / T  ratio in heat transfer 
and the AP/P ratios in duct flow with friction. 

The complete four-term entropy generation rate expression 
(Eq. 122) was used by San, Worek, and Lavan 57 for determining 
the optimum spacing (D) of a parallel-plate heat and mass 
exchanger with uniform heat and mass fluxes. They showed that 
the thermodynamic optimum is due to the fact that the fluid 
friction term varies as D-3, whereas the remaining terms are 
directly proportional to D. 

Of the thermodynamic design work devoted to mass transfer 
processes, a substantial part deals with the optimization of 
drying and moistening processes (for example, Sieniutycz 58-61), 
the dehumidification of air, 62 and the dessicant cooling 
systems. 63'64 A general framework for the calculation of mass 
transfer irreversibility in chemical separation systems was 
constructed by Moore and Wepfer. 65 

Convective heat and mass transfer through a saturated 
porous medium 

Considering the step-by-step evolution from convective heat 
transfer (Eq. 30) to combined heat, mass, and fluid flow (Eq. 
122), this is an opportunity to generalize the entropy generation 
rate formula for convection through a saturated porous medium 
(first stated in ref. 4, p. 355). Writing term-by-term the porous- 
medium equivalent of Eq. (122), 

Sg'en = "/~ E Dpm,i (VCpm i) 2 + K--~ (vpm)2 
i C'pm,i 
kpm 2 1 

+ T T  (VT) + ~  i~ Spm,iDpm,i(VCpm,i)" (VT) (124) 

we note the special form of the fluid friction contribution (the 
second term), in which %m is the volume-averaged velocity 
vector through the mixture-saturated porous medium. The 
second term owes its compact form to the Darcy flow model, K 
being the permeability constant of the medium. The saturated 
porous medium is further modeled as homogeneous and 
isotropic with an effective thermal conductivity kpm. The solid 
matrix is locally in thermal equilibrium with the fluid that seeps 
through it. The concentration Cpm,i is a volume-averaged 
quantity also, since it represents the number moles of i per cubic 
meter of porous medium saturated with fluid. The partial molal 
entropy Spm,i is also a volume-averaged quantity. The coefficient 
D_pm,i is the mass diffusivity of the i species through the porous 
medium saturated with the fluid mixture i belongs to. 

The thermodynamic design developements reviewed in this 
paper are only a part of the modern look of engineering 
thermodynamics. The latter forms the subject of a new graduate 
textbook. 66 
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